Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Optimized production of tannase and gallic acid from fruit seeds by solid state fermentation

Rida Arshad1, Ayesha Mohyuddin1 , Shagufta Saeed2, Abrar UI Hassan1

1Department of Chemistry, School of Science, University of Management and Technology; 2Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Science, Lahore, Pakistan.

For correspondence:-  Ayesha Mohyuddin   Email: ayesha.mohyuddin@umt.edu.pk   Tel:+923014324884

Accepted: 25 April 2019        Published: 31 May 2019

Citation: Arshad R, Mohyuddin A, Saeed S, Hassan AU. Optimized production of tannase and gallic acid from fruit seeds by solid state fermentation. Trop J Pharm Res 2019; 18(5):911-918 doi: 10.4314/tjpr.v18i5.1

© 2019 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To investigate the possibility for gallic acid production from different tannin-rich fruit seeds using Aspergillus oryzae via solid-state fermentation.
Methods: Fruit seeds of apple, guava, tamarind, black plum and watermelon were analyzed to estimate the synthesis of an enzyme tannase and its product gallic acid. Various physicochemical parameters were optimized to increase the gallic acid yield. Gallic acid was extracted by Soxhlet apparatus and identified by Fourier-transform infrared spectroscopy (FTIR). It was quantitatively determined by high performance liquid chromatography (HPLC).
Results: Amongst the various substrates tested, black plum seeds gave the highest activity of 34.40 U/g for tannase and 16.66 mg/g for gallic acid under optimized physicochemical conditions, i.e., 1:3 substrate: moisture ratio, 30 °C, 96 h incubation period and pH 5.5. Addition of carbon source had a negative effect on production while ammonium sulphate (0.2 %) as nitrogen source increased the yield of both products. The gallic acid produced was 98.5 % pure, compared to the standard.
Conclusion: Production of tannase and gallic acid via solid-state fermentation conditions has been optimized in vitro. The optimized conditions can be utilized on a commercial scale for economically viable production of gallic acid.

Keywords: Tannin rich seeds, Solid-state fermentation, Tannase, Gallic acid, Aspergillus oryzae

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates